CARNEGIE-MELLON EV PERFORMANCE SIMULATION

GM Volt - Vehicle, Motor, Road, and Environmental Parameters:

Max Motor Power:
Power $_{\text {max }}:=120 \cdot \mathrm{~kW}$
$P_{\text {Generator }}:=53 \cdot \mathrm{~kW}$
Max Motor Torque:
Max Force, Fm
Power $_{\text {max }}=160.923 \mathrm{hp}$
Constant Torque vehicle velocity, v_{CP} :
Time, in seconds:
Time unit:
Shape Correction Factor: SCF $:=0.85$
Drag Coeff:
Cross Wind Drag Coff:
Air Density:
Road Rolling Resist:
Rotational Inertia Coeff:
Gross Weight:
Power $_{\text {max }}=160.923 \mathrm{hp}$
$\mathrm{Tm}:=370 \cdot \mathrm{~N} \cdot \mathrm{~m}$
$\mathrm{Fm}:=\mathrm{GR} \cdot \frac{\mathrm{Tm}}{\mathrm{r}_{\text {tire }}}$
$\mathrm{v}_{\mathrm{CP}}:=\frac{\text { Power }_{\text {max }}}{\mathrm{Fm}}$
$\mathrm{t}:=0,1 . .61$
$\tau:=1 \cdot \sec$
$\mathrm{Cd}:=0.215$
$\mathrm{Cd}_{\mathrm{cw}}:=0.000014$
$\rho:=1.3 \cdot \frac{\mathrm{gm}}{\text { liter } \cdot \frac{\mathrm{m}}{\mathrm{er}}}$
$\mathrm{RR}_{\text {road }}:=0.0011$
$\mathrm{k}_{\mathrm{m}}:=1.06$
$M_{\text {gross }}:=M_{\text {curb }}+$ Passengers2

Gear Ratio ($\mathrm{v}_{\mathrm{CP}}=60 \mathrm{mph}$): GR :=8.2
Battery Energy:
Tire Radius*:
$\mathrm{Fm}=2.074 \times 10^{3} \mathrm{lbf}$
MaxHp := 161
${ }^{\mathrm{v}} \mathrm{CP}=29.102 \mathrm{mph}$
Average Wind Velocity:
Effective Cross Wind V:
Frontal Area*:
Frontal Area Corrected: Af $:=\mathrm{Afg} \cdot \mathrm{SCF}$ Af $=1.836 \mathrm{~m}^{2}$
Rolling Resistance Per Tire: $\mathrm{RR}_{\text {tire }}:=0.01$
Tire Hysteresis, Th: θ (radians):
(Average 0% road grade) $\theta:=\operatorname{atan}(0) \quad \mathrm{T}_{\text {hys }}:=0 \cdot \frac{\mathrm{sec}}{\mathrm{m}}$
Curb Weight:
Passenger Weight:
$\mathrm{M}_{\text {gross }}=3.31 \times 10^{3} \mathrm{lb} \quad \mathrm{M}_{\text {batt }}:=300 \mathrm{lb}$
$\mathrm{M}_{\text {curb }}:=3140 \cdot \mathrm{lb}$
Passengers2 := 170•lb
Energy $_{\text {bat }}:=16 \cdot \mathrm{~kW} \cdot \mathrm{hr}$
$\mathrm{r}_{\text {tire }}:=\frac{25.9}{2} \cdot$ in $\begin{aligned} & 195 / 55 \mathrm{R} 21 \\ & 225 / 45 \mathrm{R} 18\end{aligned}$
RPM $:=\min ^{-1}$
$\omega_{\text {max }}:=12000 \cdot \mathrm{RPM}$
$\mathrm{k}:=10^{3}$
$\mathrm{Vw}:=0 \cdot \mathrm{mph}$
$\mathrm{V}_{\mathrm{cw}}:=0 \cdot \mathrm{mph}$
Afg $:=2.16 \cdot \mathrm{~m}^{2}$

$$
\mathrm{M}_{\mathrm{batt}}:=300 \mathrm{lb}
$$

Vehicle Dynamics Equations:

Road Resistance, Ft:
Air Drag Force, Fa:
Opposing Force, Fo:

Torque/Force Drop Curve:
Torque Speed Relation:
Third Law of Motion:
(a is acceleration)

$$
\begin{aligned}
& \mathrm{Ft}(\mathrm{v}):=\mathrm{M}_{\mathrm{gross}} \cdot \mathrm{~g} \cdot\left[\mathrm{~T}_{\mathrm{hys}} \cdot \mathrm{v} \cdot \sin (\theta)+\left(\mathrm{RR}_{\text {tire }}+\mathrm{RR}_{\mathrm{road}}\right) \cdot \cos (\theta)+\sin (\theta)\right] \\
& \mathrm{Fa}(\mathrm{v}):=0.5 \cdot \rho \cdot \mathrm{Af} \cdot\left[(\mathrm{v}+\mathrm{Vw})^{2} \cdot \mathrm{Cd}+\mathrm{Cd}_{\mathrm{cw}} \cdot\left(\mathrm{~V}_{\mathrm{cw}}\right)^{2}\right] \\
& \mathrm{Fo}(\mathrm{v}):=\mathrm{Fa}(\mathrm{v})+\mathrm{Ft}(\mathrm{v}) \quad \text { Note: Force } / \text { Torque Curve is based on Tesla Data }
\end{aligned}
$$

Torque Model (Tesla) Linear Falloff - Match 1-60 mph Performance

$\mathrm{Fd}_{\text {tire }}(\mathrm{v}):=\mathrm{Fm} \cdot\left[1-\left(\mathrm{v}-\mathrm{v}_{\mathrm{CP}}\right) \cdot\left[\left(110-\frac{\mathrm{v}_{\mathrm{CP}}}{\mathrm{mph}}\right) \cdot \mathrm{mph}\right]^{-1}\right] \quad \mathrm{F}_{\mathrm{p}}(\mathrm{v}):=\frac{\text { Power }_{\text {max }}}{\mathrm{v}}$
$\mathrm{F}(\mathrm{v}):=\operatorname{if}\left(\mathrm{v} \leq \mathrm{v}_{\mathrm{CP}}, \mathrm{Fm}_{\mathrm{F}}, \mathrm{Fd}_{\text {tire }}(\mathrm{v})\right)$
$\mathrm{a}(\mathrm{v}):=\frac{\mathrm{F}(\mathrm{v})-\mathrm{Fo}(\mathrm{v})}{\mathrm{M}_{\mathrm{gross}}}$
$T(v):=F(v) \cdot \frac{r_{\text {tire }}}{G R}$
$\mathrm{T}_{\omega}(\omega):=\mathrm{T}\left(\omega \cdot \mathrm{k} \cdot 2 \cdot \pi \cdot \mathrm{r}_{\text {tire }} \cdot \mathrm{GR}^{-1} \cdot \mathrm{RPM}\right)$
$\mathrm{P}(\mathrm{v}):=\mathrm{F}(\mathrm{v}) \cdot \mathrm{v} \quad \mathrm{P}(60 \cdot \mathrm{mph})=205.059 \mathrm{hp}$

Applying maximum motor torque, find the velocity starting from initial velocity $=\mathbf{0} \mathbf{~ m p h}$.

$$
\begin{aligned}
& \text { Time }:=0 \cdot \sec \\
& \mathrm{~V}:=0 \cdot \mathrm{mph} \\
& \operatorname{velocity}(\mathrm{t}):=\operatorname{root}\left(\mathrm{V}-\int_{0}^{\mathrm{t}} \mathrm{a}(\mathrm{~V}) \cdot \tau \mathrm{dt}, \mathrm{~V}\right) \\
& \text { time(v) := } \operatorname{root}(\mathrm{v}-\mathrm{velocity}(\text { Time }), \text { Time }) \\
& \mathrm{P}_{\mathrm{m}}(\omega):=\mathrm{T}_{\omega}(\omega) \cdot \mathrm{k} \cdot 2 \cdot \pi \cdot \omega \cdot \mathrm{RPM} \\
& \operatorname{velocity}(60 \cdot \mathrm{sec})=95.177 \mathrm{mph} \\
& \operatorname{acc}_{g}(\mathrm{t}):=\mathrm{a}(\text { velocity }(\mathrm{t} \cdot \mathrm{sec})) \\
& \text { time }(60 \cdot \mathrm{mph})=7.522 \mathrm{~s} \\
& \mathrm{P}_{\mathrm{m}}(5.5)=206.015 \mathrm{hp}
\end{aligned}
$$

Find the Single Charge (@SOC = 50\%) Cruise Range for a given Velocity

Driving Pattern/Profile:

Given we cruise at constant speed and Time for start, stop, and regen breaking, Time ssr $=$ every 15 minutes.
Drive Train Power Efficiency - Battery Loss to Force Commanded Vehicle Velocity:
State of Charge for generator is $\mathrm{SOC}_{\text {gen }} \cdot \mathbf{S O C}_{\text {gen }}$ is 50% for recharge. 320V HV battery idle power is Po. 12 V battery gives Accessory Power. The Traction Inverter x motor Efficiency - TInvE, HV Power Electronics at Idle Efficiency - IPEE, and Gear Power Efficiency - GPE are 90%, 95%, and 97%, respectively. Brake Regen efficiency of kinetic energy is 69% @ deacceleration $=0.315 \mathrm{~g}$. Then the number of starts per hour as a function of velocity, NS, NumStarts(v, Po), is

Time $_{\text {ssr }}:=30 \mathrm{~min} \quad$ TInvE $:=0.90 \quad$ IPEE $:=0.95 \quad$ GPE $:=0.97 \quad$ Regen $:=0.69 \quad$ SOC $_{\text {gen }}:=0.5$
$\operatorname{Power}_{\text {dissLoss }}\left(\mathrm{v}, \mathrm{P}_{\mathrm{o}}\right):=\frac{\mathrm{Fo}(\mathrm{v}) \cdot \mathrm{v}}{\text { TInvE } \cdot \mathrm{GPE}}+\frac{\mathrm{P}_{\mathrm{o}} \cdot \text { watt }}{\text { IPEE }}$
NSo and NS are iterative converging estimates of NumStarts
USABC Round Trip Battery Energy EIIICIency RTEff := 0.92
Energy $_{\text {accel }}(\mathrm{v}):=$ Power $_{\text {max }} \cdot \operatorname{time}(\mathrm{v})$

> FTPF := READPRN("http://www.leapcad.com/Transportation/FedTestProc.TXT")
> UDDSF := READPRN("http://www.leapcad.com/Transportation/uddscol.txt")
> HWYF := READPRN("http://www.leapcad.com/Transportation/hwycol.txt")
> FP10 := READPRN("http://www.leapcad.com/Transportation/FTP10Hz.TXT")
> HY10 := READPRN("http://www.leapcad.com/Transportation/HWY10Hz.txt")
> US06F := READPRN("http://www.leapcad.com/Transportation/US06PROFILE.TXT")

All Electric Range, AER: Different Driving Schedules

Read US06 and FTP Driving Profile Files
http://www.epa.gov/nvfel/testing/dynamometer.htm

The US06 cycle represents an 8.01 mile (12.8 km) route with an average speed of 48.4 miles $/ \mathrm{h}(77.9 \mathrm{~km} / \mathrm{h})$, maximum speed 80.3 miles $/ \mathrm{h}(129.2 \mathrm{~km} / \mathrm{h})$, and a duration of 596 seconds.
The Federal Test Procedure(FTP) is composed of the UDDS followed by the first 505 seconds of the UDDS. It is often called the EPA75. FP10 is a 10 Hz Sampling. HY10 is the 10 Hz Highway schedule.

$$
\begin{array}{lll}
\mathrm{t}:=\mathrm{FTPF}^{\langle 0\rangle} & \mathrm{FTP}:=\mathrm{FTPF}^{\langle 1\rangle} \quad \operatorname{rows}(\mathrm{FTP})=1.875 \times 10^{3} \\
& \left.\mathrm{UDDS}:=\mathrm{UDDSF}^{\langle 1\rangle}\right\rangle & \operatorname{rows}(\mathrm{UDDS})=1.37 \times 10^{3} \\
& \mathrm{HWY}:=\operatorname{HWYF}^{\langle 1\rangle} \quad \mathrm{R}_{\mathrm{hwy}}:=\operatorname{rows}(\mathrm{HWY})
\end{array}
$$

$$
\text { FTP10V }:=\operatorname{submatrix}(\mathrm{FP} 10,0, \operatorname{rows}(\mathrm{FP} 10)-1,1, \operatorname{cols}(\mathrm{FP} 10)-1)
$$

$$
\text { HWY10V }:=\operatorname{submatrix}(\mathrm{HY} 10,0, \operatorname{rows}(\mathrm{HY} 10)-1,1, \operatorname{cols}(\mathrm{HY} 10)-1)
$$

$$
\text { time }:=\operatorname{USO}{ }^{\left\langle F{ }^{0}\right\rangle} \quad \text { US06 }:=\operatorname{USO6F}^{\left\langle{ }^{1}\right\rangle} \quad \mathrm{n}_{6}:=0 . .598
$$

Calculate All Electric Range, AER, for Driving Profile Velocity/Time File, P and Sampling Rate, Hz

Regen Efficiency Curve vs Decel (g): $\operatorname{REff}(\mathrm{g}):=\frac{85}{77} \cdot 0.01 \cdot\left[\left(1-\mathrm{e}^{-27.129 \cdot \mathrm{~g}}\right) \cdot 91.235-28.408\right] \quad \mathrm{Gg}:=\frac{\mathrm{mph}}{\sec \cdot \mathrm{g}}$

$$
\begin{aligned}
& \mathrm{R} \leftarrow \sum_{\mathrm{m}=0}^{\mathrm{n}} \frac{\left(\mathrm{~V}_{\bmod (\mathrm{m}, \mathrm{~N})}+\mathrm{V}_{\bmod (\mathrm{m}+1, \mathrm{~N})}\right) \cdot \mathrm{mph} \cdot \mathrm{sec}}{2 \cdot \mathrm{mi} \cdot \mathrm{~Hz}}
\end{aligned}
$$

EPA 2008 Cycle MPG Fuel Economy Least Squares Fit Regression for AER
$\mathrm{MPG}_{\text {city }}:=\frac{1}{\left(0.003259+\frac{1.18053}{\mathrm{AER}_{\mathrm{FTP}}}\right)}$

$\mathrm{MPG}_{\text {epa }}:=0.55 \cdot \mathrm{MPG}_{\text {city }}+0.45 \cdot \mathrm{MPG}_{\text {hwy }}$
AER Results

$$
\mathrm{AER}_{\mathrm{FTP}}=39.374
$$

$$
\mathrm{AER}_{\mathrm{HWY}}=40.254
$$

$$
\mathrm{AER}_{\text {US06 }}=28.001
$$

$$
\mathrm{MPG}_{\mathrm{hwy}}=28.712
$$

$$
\mathrm{MPG}_{\text {epa }}=29.466
$$

WRITEPRN("EFTP.PRN") $:=\operatorname{AER}(\operatorname{FTP}, 1) \cdot 40 \quad \mathrm{E}_{\mathrm{FTP}}:=\operatorname{READPRN}(" E F T P . P R N ") \quad \max \left(\mathrm{E}_{\mathrm{FTP}}\right) \cdot \mathrm{X}=39.375$
WRITEPRN("EUS06.PRN") := AER(US06,1)•40
$\mathrm{E}_{\mathrm{US} 06}:=$ READPRN("EUS06.PRN" $) \max \left(\mathrm{E}_{\mathrm{US} 06}\right) \cdot \mathrm{X}=28$
WRITEPRN("EHWY.PRN") := AER(HWY, 1).40 $\mathrm{E}_{\text {HWY }}:=$ READPRN("EHWY.PRN") $\max \left(\mathrm{E}_{\mathrm{HWY}}\right) \cdot \mathrm{X}=40.25$

FTP Drive Cycle: Distance, E(Bat Drain)

Economic and Environmental Benefits of PHVs

Load the Carnegie Mellon Design Matrix, Design:

Design := READPRN("IBWEBF.txt") Cols: OX, 1X, 2X of 7204060 \& HEV, CV rows(Design) =
Rows: AER (mi), PE (kW), WtE (kg), PM(kW), WtM (kg), WtC (kg), WtS (kg), WtTot (kg), \#Mod, \#Cells, BatV(m3), Bat (Wh), BW (kg), BSW(kg), BTW(kg), VW (kb), ECD (Wh/mi), CD AER(mi), ECS(gal/100mi), 0-60 (sec),Op\$CD(\$/mi), Op\$CS(\$/mi), GHG CD(kg/mi), GHG C/s(kg/mi)

$$
\mathrm{M}_{\text {Prius }}:=824 \cdot \mathrm{~kg} \quad M_{\text {Prius }}=1.817 \times 10^{3} \mathrm{lb}
$$

Given:

We use the default MY04 Prius configuration. The vehicle body weight is 824 kg , drag coefficient is 0.26 , frontal area is 2.25 m 2 , tire specification is P175/65 R14, and front/rear weight ratio is $0.6 / 0.4 .3$ The performance map and motor and controller weight are scaled linearly with peak power.

The PHEV operation costs in this study are evaluated based on an electricity charging cost of \$0.11 per kWh and retail gasoline price $\$ 3.00$ per gallon ($\$ 0.80$ per liter). In order to calculate the vehicle cost, we estimated the vehicle base cost, excluding the Li-ion battery, using the Prius MSRP less its NiMH battery cost of $\$ 3,900$ (Naughton, 2008), resulting in a vehicle base cost of $\$ 17,600$. The base battery cost is assumed to be $\$ 1,000$ per kWh (Lemoine et al., 2008), and a future low cost $\$ 250 / \mathrm{kWh}$ case.

The battery model is based on a Saft Li-ion battery package, where each module is comprised of three cells in series with a specific energy adjusted to $100 \mathrm{~Wh} / \mathrm{kg}$ (Kalhammer et al., 2007). The weight of each cell is 0.173 kg , and its capacity is 6 Ah with a nominal output voltage of 3.6 volts. Accounting for the weight of packaging using a factor of 1.25 , the weight of one 3 -cell module is 0.65 kg . number of Li-ion battery modules is adjusted to match the original NiMH battery capacity of 1.3 kWh .

We used the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) (EPA, 1996) driving cycle. To compare equivalent-performance vehicles, motor size (power) was then adjusted to achieve a 0-60 mph acceleration time specification of $10.5+0.0 /-0.5$ seconds, which is approximately the acceleration performance of a Toyota Prius.

The relationships are fairly linear in this range; increasing the target AER of a given PHEV by 10 miles results in an additional $\sim 95 \mathrm{~kg}$ of vehicle weight. This additional weight reduces CD-mode and CS-mode efficiencies by 0.10 mile $/ \mathrm{kWh}$ and 0.68 mile/gal, respectively. These efficiency reductions cause an increase in vehicle operating costs of $\$ 0.40-\$ 0.80$ per 1000 miles in CD-mode and CS-mode, respectively, and an increase in operation-associated GHG emissions of 3.0-3.2 kg CO2-eq per 1000 miles in CD-mode and CS-mode, respectively.

The linear regression functions for the +1 x structural weight case are:

Efficiencies (1X)

$$
\begin{aligned}
& \eta_{\mathrm{CD}}\left(\mathrm{~d}_{\mathrm{AER}}\right):=\left(-0.010 \cdot \mathrm{~d}_{\mathrm{AER}}+5.67\right) \cdot \frac{\mathrm{mi}}{\mathrm{~kW} \cdot \mathrm{hr}} \\
& \eta_{\mathrm{CS}}\left(\mathrm{~d}_{\mathrm{AER}}\right):=\left(-0.068 \cdot \mathrm{~d}_{\mathrm{AER}}+51.7\right) \cdot \frac{\mathrm{mi}}{\mathrm{gal}}
\end{aligned}
$$

$\eta_{\mathrm{CD}}(40)=5.27 \frac{\mathrm{mi}}{\mathrm{kW} \cdot \mathrm{hr}} \quad \frac{1000}{\mathrm{Design}_{16,6}}=\mathbf{I}$
$\eta_{\mathrm{CS}}(40)=48.98 \frac{\mathrm{mi}}{\mathrm{gal}}$

Operation Costs per 100 Miles

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{op} _\mathrm{CD}}\left(\mathrm{~d}_{\mathrm{AER}}\right):=0.004 \cdot \mathrm{~d}_{\mathrm{AER}}+2.20 \\
& \mathrm{c}_{\mathrm{op} _\mathrm{CS}}\left(\mathrm{~d}_{\mathrm{AER}}\right):=0.008 \cdot \mathrm{~d}_{\mathrm{AER}}+5.79
\end{aligned}
$$

GHG Emissions in kg of $\mathbf{C O 2}$

$v_{\mathrm{op} _\mathrm{CD}}\left(\mathrm{d}_{\mathrm{AER}}\right):=0.029 \cdot \mathrm{~d}_{\mathrm{AER}}+14.6$
$v_{\mathrm{op} _\mathrm{CS}}\left(\mathrm{d}_{\mathrm{AER}}\right):=0.032 \cdot \mathrm{~d}_{\mathrm{AER}}+21.9$

Operational Performance

To compare the operational performances of different vehicle configurations, we examine three PHEV characteristics: fuel consumptions (i.e. fuel economy), operational costs and operational GHG emissions. Because these three performance criteria depend on the distance traveled between charges, two key quantities are needed.

For a distance d traveled between charges in a vehicle with an all-electric range of $d A E R$, the distance traveled in CD-mode $d_{C D}$ and the distance traveled in CS-mode $d_{C S}$ are calculated as:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{cd}}\left(\mathrm{~d}, \mathrm{~d}_{\mathrm{AER}}\right):=\operatorname{if}\left(\mathrm{d} \leq \mathrm{d}_{\mathrm{AER}}, \mathrm{~d}, \mathrm{~d}_{\mathrm{AER}}\right) \\
& \mathrm{d}_{\mathrm{cs}}\left(\mathrm{~d}, \mathrm{~d}_{\mathrm{AER}}\right):=\operatorname{if}\left(\mathrm{d} \leq \mathrm{d}_{\mathrm{AER}}, 0, \mathrm{~d}-\mathrm{d}_{\mathrm{AER}}\right)
\end{aligned}
$$

The results of fuel economy (CS-mode efficiency) in Table 1 indicate that as the target AER increases from 7 miles to 60 miles, the modeled urban driving fuel economy decreases 7.4% from 51.5 miles per gallon (mpg) to 47.7 mpg in the +1 x base case due to increased weight. This effect is reduced under lower structural weight assumptions and amplified for larger structural weight. The average fuel consumption per mile g is calculated by, where η CS is the fuel efficiency in CS-mode.

$$
g=\frac{1}{d}\left(\frac{d_{\mathrm{CS}}}{\eta_{\mathrm{HEV}}}\right)
$$

where η CD is CD-mode vehicle electrical efficiency, $\eta \mathrm{C}$ is the charging efficiency, cELEC is the cost of electricity, and cGAS is gasoline cost. Table 1 shows the average operation cost per mile for CD-mode and CS-mode under the three structural weight multiplier cases assuming cELEC $=\$ 0.11$ per $\mathrm{kWh}, \eta \mathrm{C}=88 \%$ and $\mathrm{cGAS}=\$ 3.00$ per gallon

$$
\begin{aligned}
& \eta_{\mathrm{C}}:=0.88 \quad \mathrm{c}_{\text {ELEC }}:=\frac{0.11}{\mathrm{~kW} \cdot \mathrm{hr}} \quad \mathrm{c}_{\mathrm{GAS}}:=\frac{5}{\mathrm{gal}} \quad \quad \eta_{\mathrm{CS}} \quad \mathrm{ICE}:=27 \cdot \frac{\mathrm{mi}}{\mathrm{gal}} \\
& c_{o p}\left(d^{2}, d_{A E R}\right):=\frac{1}{d \cdot m i} \cdot\left(\frac{d_{c d}\left(d_{, ~ d_{A E R}}\right) \cdot m i}{\eta_{C D}\left(d_{A E R}\right)} \cdot \frac{c_{E L E C}}{\eta_{C}}+\frac{d_{c s}\left(d, d_{A E R}\right) \cdot m i}{\eta_{C S}\left(d_{A E R}\right)} \cdot c_{G A S}\right) \\
& \mathrm{c}_{\text {op_ICE }}:=\frac{1}{100 \cdot \mathrm{mi}} \cdot\left(\frac{100 \cdot \mathrm{mi}}{\eta_{\mathrm{CS}} \mathrm{ICE}} \cdot \mathrm{c}_{\mathrm{GAS}}\right) \quad \mathrm{c}_{\text {op_ICE }}=0.185 \frac{1}{\mathrm{mi}}
\end{aligned}
$$

The equation for the net present value of lifetime cost per mile is given by:

$$
\begin{aligned}
& v_{\text {Bat }}:=100 \cdot \frac{\mathrm{~W} \cdot \mathrm{hr}}{\mathrm{~kg}} \quad \mathrm{c}_{\text {Bat }}:=\frac{700}{\mathrm{~kW} \cdot \mathrm{hr}} \quad \mathrm{c}_{\text {Volt }}:=28800 \quad \mathrm{c}_{\text {VEH }}:=17600 \quad \mathrm{c}_{\text {ICE }}:=22000 \\
& \mathrm{~d}_{\mathrm{ANUL}}:=12500 \cdot \mathrm{mi} \quad \mathrm{~N}_{\mathrm{yr}}:=12 \quad \quad \mathrm{~d}_{\mathrm{LIFE}}:=150000 \cdot \mathrm{mi} \quad \mathrm{E}_{\mathrm{Volt}}:=16 \cdot \mathrm{~kW} \cdot \mathrm{hr} \\
& \kappa\left(\mathrm{~d}_{\mathrm{AER}}\right):=8.2 \cdot \frac{\mathrm{~d}_{\text {AER }}}{20} \cdot \mathrm{~kW} \cdot \mathrm{hr} \quad \mathrm{r}:=0.05 \quad \rho:=0 \quad \mathrm{v}_{\mathrm{OP}}:=\frac{0}{\mathrm{mi}} \quad \mathrm{c}_{\mathrm{Volt}}+\mathrm{c}_{\mathrm{Bat}} \cdot \mathrm{E}_{\mathrm{Volt}}=4 \times 10^{4} \\
& \mathrm{C}_{\mathrm{ICE}}:=\frac{\mathrm{mi}}{\mathrm{~d}_{\text {LIFE }}} \cdot\left[\mathrm{c}_{\mathrm{ICE}}+\sum^{\mathrm{N}_{\mathrm{yr}}} \frac{\mathrm{c}_{\text {op_ICE }} \cdot \mathrm{d}_{\text {ANUL }}}{(1+\mathrm{r})^{\mathrm{n}}}\right] \quad \mathrm{C}_{\mathrm{ICE}}=0.283
\end{aligned}
$$

Conclusion:

At $\$ 3.00 / \mathrm{gal}$, the Lifetime costs of a 40 and 60 mile AER Prius are greater than an ICE vehicle.
Note: Because of the added battery weight and reduced traction power, a high AER EV, must use expensive materials for the vehicle structure to reduce the total weight of the EV. The above calculations do not consider the extra power needed for heating and A/C. Thus, with gas at $\$ 3.00 / \mathrm{gal}$, REEVs above 20 miles are not a viable economic alternative to ICEs.

$$
v_{\mathrm{TOT}}=v_{\mathrm{OP}}+\frac{1}{d_{\mathrm{LFE}}}\left(v_{\mathrm{VEH}}+v_{\mathrm{BAT}} K\right) \quad v_{\mathrm{VEH}}^{-\mathrm{C} 02}:=8500 \cdot \mathrm{~kg} \quad v_{\mathrm{BAT}}:=120 \cdot \frac{\mathrm{~kg}}{\mathrm{~kW} \cdot \mathrm{hr}}
$$

